How Psyray Professional Works

Psyray Professional measures the exchange of information of your body cells and thus exposes your psycho-emotional patterns.

Our starting point is that body and mind are a unit and that each cell in the body has its own frequency and thus its own story. By scanning and analyzing these vibrations, we can objectively and quickly determine the state of mind of your body. The software calculates the origin of this with complex algorithms and provides solutions in concrete steps.

The course of a session

At the beginning of the session, the Psyray headphones are placed on your head, while you sit quietly on your chair. Then the scan begins, which you can follow on the screen. You see energy values, curves of your relevant physiological functions and organs passing by such as brain, heart, lungs, stomach, liver, nervous system, up to and including cells and chromosomes. This data is also the starting point for further analysis that builds up your complete story of your current process.

ScanCoaching – the methodology

Since 2007, the ScanCoaching methodology has been in development. This methodology gives shape to the complex data that Psyray Professional displays. With ScanCoaching we are able to create the 5 important steps to transformation and awareness in a very short time. One of the most important discoveries was to find the cause of the current process. By using fractal recursion on the big data, it became possible to find the origin (and the important nodes) of the big data. We call this one: the fractal tree.

Scientific background

Basics of Psyray Technology: PsychoPhysica

Non-linear (NLS) medicine is based on a new paradigm based on entropy and quantum information links and logic.

The main principles are:

The fact that the information is a material category is recognised. Previous physical theories describing the interaction of information in the environment (Claude Shannon’s information theory, Norbert Wiener’s cybernetics) considered information to be a mathematical abstraction, describing the basic laws of information exchange, but did not reveal its physical essence. These theories did not explain the interaction of the basic categories of matter – mass, energy and information, nor did they explain the emergence of basic information in the process of scientific cognition.

Quantum data

The properties of quantum information are essential, but a particularly serious aspect that distinguishes quantum information from classical information can be found in John Bell’s 1964 work. According to Bell, quantum information can be encoded (and actually encoded) in non-local correlations between different parts of the physical system, in correlations that do not have a classical analogue.

The study of quantum information as a sequential discipline began in the 1980s and flourished in the 1990s. Many of the most important results of classical information theory have quantum analogs that have recently been discovered and developed. Some of them, including compression of quantum information, limits of classical information encoded in quantum systems, boundaries of quantum information that are reliably transmitted through a quantum channel of interference (noise).

Given that quantum information has many unusual properties, one would expect quantum theory to have a profound effect on our understanding of computer science. But what for many of us came as a thunderclap in clear skies was made possible by Peter Shore in April 1994. Shore showed that a computer can effectively factor in large numbers.

Factorization (searching for simple composite number multipliers) is an example of a difficult-to-solve problem with the following properties:

  • The solution found can be easily checked.
  • But it’s hard to find a solution.

Quantum logic

Quantum logic with quantum states defined on it is in fact a non-classical probability theory. The difficulty was the consistent development and integration of non-switchable versions of classical concepts.

After setting algebraic logic, it is necessary to convert logical concepts and problems into algebraic, which makes it possible to examine logic and its properties using algebraic methods. With this approach, quantum logic logic is semantically determined by an algebraic structure.


In non-equilibrium (irreversible) processes, entropy also serves as a measure of the degree to which the system is close to balance: the more entropy, the closer the system is to balance (in the thermodynamic equilibrium state, the entropy of the system is maximum).

Quantum Entropic Logic

Quantum Entropic Logic is a symbiosis of quantum information and quantum logic that allows us to evaluate the entropy of the state of a biological object (human) including his psyche using rigorous mathematical methods.

The conclusions of the Quantum Entropic Logic are the following:

  • Each material object of a biological or non-biological nature increases its level of structural organisation when it absorbs information from the environment, i.e. it becomes more complex and sustainable.
  • Any material object of a biological or non-biological nature lowers its level of structural organization when it loses information, making it less stable and more disorganized. For a biological object, loss of structural organization (information) means a deterioration of adaptive behavior, the development of diseases and, finally, the death of the organism.
  • There is always information noise around each destructing object that loses information. The more intensive the destruction of a biological object, the more acute the course of the disease is recorded and the higher the information noise around that object. So if we measure the level of information noise around a biological object, we will be able to assess the rate of destruction of that object; and if we measure the frequency properties of background noise, we will know which tissues in the body are destroyed and changed more than others, because each tissue in a living organism has its own specific frequency spectrum that differs from the other.

Information composition of biological objects

  • It is known that there are several mechanisms to control the homeostasis (internal environment) of the body.
  • According to V.I. Vernadsky, ‘there is in the biosphere a great geological, perhaps cosmic force, whose planetary action is not usually included in the representation of the cosmos … This force is the human spirit, the aspiration and organized will of man as a creature of society’
  • The concept of ‘noosphere’ was proposed by the professor of mathematics at the Sorbonne, Edward Le Roy, who interpreted it as a ‘thinking’ shell formed by human consciousness. E. Leroy emphasized that he had come up with this idea together with his friend, the geologist and paleontologist evolutionist, and the Catholic philosopher Pierre Teillard de Chardin. Leroy and Chardin relied on the lectures on geochemistry given by Vladimir Ivanovich Vernadski to the Sorbonne in 1922/23.
  • Furthermore, these ideas were developed in the work of Karl Pribram ‘Languages of the Brain’. Karl Pribram (by Karl H. Pribram; 1919-2015) an American neurosurgeon, neurologist and psychologist of Austrian descent. The interdisciplinary approaches proposed and developed by the author in the field of holographic neurophysiology are linked to the ideas of cybernetics. Pribram considered that a person’s mental behavior is a result of the processing (coding and transcoding) of information entering his brain: figurative and semantic.
  • These ideas were further developed in the work of P. Garyaev, who, working at the USSR Academy of Sciences (1984-1998) as a senior researcher and team leader, discovered two previously unknown, unusual types of memory of DNA molecules. This was recorded by a method of correlation laser spectroscopy.

Mechanisms of Homeostasis

It is known that there are several mechanisms for the control of the homeostasis (internal environment) of the organism.

  • The first is the mechanism of humoral (biochemical) control of the homeostasis. This mechanism is studied in detail by modern medicine (it consists of biologically active substances such as enzymes and hormones, which are secreted in the blood). This is a slow process that can take hours or days. Rapid physiological processes cannot be regulated by this mechanism.
  • The next mechanism is nerve regulation. This is a relatively quick way of regulating. But there are certain cells in an organism (red blood cells, white blood cells) that cannot be inducted and at the same time respond immediately to influence. Therefore, both neural and humoral mechanisms or regulation are excluded.
  • So there should be a third important mechanism of homeostasis control. This mechanism was called the wave method of homeostasis regulation.

Any cell or tissue in an organism can be considered a receiving and transmitting radio station. The signal of biological regulation used in information exchange in biological systems has a complex structure. If we take a radio station as an example, we have one carrier wave frequency with a high frequency spectrum that is modulated by a low-frequency component that carries sound (radio) or image (television). We see the same principle in biological systems, but not with two modulation levels as in technical devices. Biosystems have hundreds of thousands of such levels. Each high-frequency component is modulated by a lower frequency component. This principle is reduced to very low frequencies (up to a few hertz). These are correlated with brain frequencies.

The same laws apply to technical devices: the high frequency component of the signal is the energy (carrier) component and is responsible for the passage of the signal, the low frequency components carry the information itself. Therefore, we need to study the information noise signal from the infrequente to the low frequency range in order to get more information.

Each biological tissue contains DNA that the body has in common and is represented throughout the range of these frequencies, but has a specific frequency for this tissue. At some point in this range, the characteristic signal amplitude of a given tissue exceeds all other frequency components. This frequency is called the natural frequency of the tissue.

The law is this: the higher the structural organization of tissue, the higher the natural frequency. For example, bone tissue has the lowest natural frequency and the cortex has the highest frequency in the tissue frequency range.

Physical carriers of energy information interactions in biological structures

Based on V.I. Vernadsky’s ideas about the biosphere developed in the early 1920s, the book ‘Biosphere’ was published in 1926, consisting of two essays: ‘Biosphere in Space’ and ‘Area of Life’.

According to Vernadsky, the biosphere is an organized, dynamic and sustainable balanced, self-sustaining and self-developing system.

The main characteristic of the organization is the biogenic migration of chemical elements produced by the forces of life, the energy source of which is the radiation energy of the sun.

Together with other geospheres, the biosphere forms a single planetary ecological system of the highest order, in which a single planetary organization operates.

In this way:

  • we consider a biological object (man and his psyche) as an open modular system in which internal and external modules (structures) interact with each other according to the principle of hierarchical connections.
  • have modules (structures) common physical and other characteristics that are in constant and temporary interaction. Many of the features are known to modern science. There are still many characteristics that need to be identified.
  • the interaction of modules (structures) can be described by the methods of quantum informatics and quantum logic with a mathematical algorithm that takes entropy into account (see above).
  • modules are physical objects of a living and inanimate nature (RNA, DNA, cells, organs, protozoa, viruses, bacteria, minerals, electromagnetic fields, etc.)

Physical aspects of information interactions in biological objects

Any biological system (cells or tissues of an organism) can be considered a cybernetic system or black box. In accordance with the laws of cybernetics, the system will work if there are two signals present: import and export. At the same time, we are not aware of the nature of the processes within the system. In order to evaluate the state of the system, we need to evaluate the system’s entry and exit signals.

By analyzing the dissociation in the graphic spectra, we can understand how quickly and how intensively which tissues are destroyed.

Psyray Technology Structure (NLS-Diagnostics):

The brain consists of two hemispheres of the brain.

  • The left hemisphere – logically – dominates the right hemisphere of the right hemisphere. If people have a predominant right hemisphere, then these people are generally creative individuals with a great intuition.
  • Internal organs are controlled by the medulla oblongata, hypothalamus and right hemisphere.
  • The logical assessment of the regulation of internal functions is blocked at the level of interhemispheric interactions and does not achieve any logical understanding and interpretation.
  • The left hemisphere is mainly characterized by a high amplitude of the alpha rhythm (wake state) and beta rhythm (during sleep).
  • The right hemisphere is mainly characterized by a low voltage theta rhythm.

When a bio-information grid is projected onto the human body, it gives an image of a geometric grid. This grid was first described by ancient Chinese medicine as the Jing Luo meridian system: a projection of this grid on the skin. The intersections of the maximum wave amplitudes from various biological sources (grid points) are called acupuncture (biologically active) points. Acupuncture points exist not only on the surface of the human body, but also in and on the surface of each organ.

We can assess the condition of each specific point in the organ, relying only on the characteristics of biologically active (acupuncture) points that have strictly individual wave characteristics (frequency, porosity, signal amplitude and wavelength).

Frequency resonance spectrum of biological tissue

The most important elements in the structure of Psyray technology are:

  • Issue, reception and processing of signals
  • Antenna system
  • Magnetic sensors
  • Low frequent trigger oscillators
  • Additional sensors for adjusting ambient signal


Psyray, unlike other (NLS class) manufactures, is composed of low-frequency trigger generators.

Consistent interaction of initiating signals, signals from generators and electromagnetic fields of the hemispheres of the brain with subsequent mathematical algorithms (see above) makes it possible to assess the state of structures of a biological object (humans), from the level of DNA to organ systems.

Literature list

  1. Kitaev, Quantum measurements and the abelian stabilizer problem online preprint,1995.
  2. K. Lenstra, J. Cowie, M. Elkenbracht-Huizing, W. Furmanski, P.L. Montgomery, D. Weber, J. Zayer, RSA factoring-by-web: the world-wide status online document, 1996.
  3. M. Steane, Active stabilization, quantum computation and quantum state synthesis, Phys. Rev. Lett., 78, 2252-2255-1997.
  4. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett., 77, 793-797-1996.
  5. M. Steane, Multiparticle interference and quantum error correction, Proc. Roy. Soc. Lond., A 452, 2551-2577 1996.
  6. M. Steane, Space, time, parallelism and noise requirements for reliable quantum computing Fortsch. Phys., 46, 443-458-1998; online preprint,1997.
  7. R. Calderbank and P.W. Shor, Good quantum error-correcting codes exist, Phys. Rev, A 54, 1098-1105 1996.
  8. R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett., 78, 405-408-1997.
  9. R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane, Quantum error correction via codes about GF4. IEEE Trans. Inf. Theory, 444, pp. 1369- 1387 online preprint,1996.
  10. Yu. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Phys, 303, 2-30 2003, online preprint ph/9707021,1997.
  11. Yu. Kitaev, Quantum error correction with imperfect gates, in Proceedings of the Third International Conference on Quantum Communication and Measurement, Ed O. Hirota, A.S. Holevo, and C.M. Caves, pp 181-188 New York, Plenum, 1997.
  12. Banai 1983 Banai М. A new approach to quantum field theory and a space-time quantization // Hadronic J. 5. No 5. pp. 1812-1841.
  13. Beran 1984 Beran L. Orthomodular Lattices: Algebraic Approach. Prague: Academia. 1984.
  14. Bernini 1981 Bernini S. Quantum logic as an extension of classical logic // Current Issues on quantum logic / Eds. Beltrametti S., Fraassen B. Van. New York, London: Plenum, 1981.
  15. BirkhofFNeumann 1936 Birkhoff 1., Neumann J. von. The logic of quantum mechanics//Annal. Math., 37, 1936. pp. 823-843.
  16. Bugajski 1983 Bugajski S. Semantics in Banach spaces // Studia Logica 42, No 1,1983. pp.81-88.
  17. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters, Mixed state entanglement and quantum error correction, Phys. Rev, A 54, 3824-3851 1996.
  18. Miquel, J.P. Paz, and W.H. Zurek, Quantum computation with phase drift errors, Phys. Rev. Lett., 78, 3971-3974-1997; online preprint,1997.
  19. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and DJ. Wineland, Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett., 75, 4714-4717-1995.
  20. Nayak and F. Wilczek, 2n quasihole states realize 2″_1-dimensional spinor braiding statistics in paired quantum Hall states, Nucl. Phys. B, 479, 529-553 1996; online preprint mat/9605145, 1996.
  21. Carola 1980 Carolai C. Propositions and orthocomplementation m quantum logic // Int J.Theor.Phys. 19, No 5. 1980. pp.369-378.
  22. Cattaneo 1993 Cattaneo G. The ‘Logical’ Approach to Axiomatic Quantum Theory // Bridging the Gap: Philosophy, Mathematics and Physics / G.Corsi étal. Eds.. Kluwer, Dordrecht, 1993. pp. 225-260.
  23. Cattaneo et al 2003 Cattaneo 7., Dalla Chiara M. L., Giuntini R. An Unsharp
  24. Cattaneo Nistico 1989 Cattaneo 7., Nislicà G. Brouwer-Zadeh posets and three-valued Lukasiewicz posets // Fuzzy Sets and Systems. 33. 1989. pp. 165-190.
  25. Chang 1982 Chang С C. Logic with Positive and Negative Truth Values // Proceedings of a Colloquium on Modal and Many-valued Logics. Helsinki, 23-26 August, 1962. Acta Phil Fennica, Phase XVI, 1963. pp 19-39.
  26. Chapman 1982 Chapman T. Quantum logic and modality// Anal. 24. No 93. 1982. pp. 99-111.
  27. Coecke 2002 Coecke B. Quantum Logic m Intuitionistic PeiNpective // Studia Logica Vol.70. No3. 2002 pp.411-440.
  28. Cohen Wartofsky 1974 Logical and epistemological studies in contemporary physics/Ed. by Cohen R.S , Wartofsky M.W Dordrecht etc • Reidel. 1974. Boston Studies in the philosophy of science, vol. 13
  29. Cutland Gibbins 1982 Cutland N. J.t Gibbms P. F. A regular sequent calculus forquantum logic in which л and v are dual // Anal. 25, No 95. 1982. pp.221-248.
  30. Aharonov and M. Ben-Or, Fault tolerant quantum computation with constant error. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing ACM. New York, 1998, p.176. online preprint,1996.
  31. Beckman, A. Chari, S. Devabhaktuni, and J. Preskill, Efficient networks for quantum factoring, Phys. Rev, A 54, 1034-1063 1996.
  32. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. bond., A 400, 97-117 1985; перевод: Д. Дойч, Квантовая теория, принцип Черча-Тьюринга и универсальный квантовый компьютер. Квантовый компьютер и квантовые вычисления. — Ижевск, РХД 1999.
  33. Dieks, Communication by electron-paramagnetic-resonance devices.
  34. DiVincenzo and P. Shor, Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett., 77, 3260-3263-1996.
  35. Gottesman and J. Preskill, unpublished 1997.
  36. Gottesman, A theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127-137 1998 online preprint ph/9702029, 1997.
  37. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev., A 54, 1862-1868-1996.
  38. Gottesman, J. Evslin, S. Kakade, and J. Preskill, unpublished 1996.
  39. Gottesman, Stabilizer codes and quantum error correction. Ph.d. thesis, California Institute of Technology online preprint,1997.
  40. A. Barrington, Bounded width polynomial size branching programs recognoze exactly those languages in АТС1, J. Comp. Sys. Sei., 38,150-164-1989.
  41. G. Cory, A.F. Fahmy, and T.F. Havel, Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. In Proceedings of the 4th Workshop on Physics and Computation, T. Toffoli, M. Biafore, and J. Leao eds., Boston, New England Complex Systems Institute, pp. 87-91 1996.
  42. Dalla Chiara 1981 Dalla Chiara M. L Some metalogica! pathologies or quantum logic // Current Issues on quantum logic / Eds. Beltrametti S., Fraassen B. Van. New York, London: Plenum, 1981, pp. 147-158.
  43. Dalla Chiara 1986 Dalla Chiara M. L. Quantum Logic // Handbook of Philosophical Logic Vol. Ill / D.Gabbay and F.Guenthner eds. Dordrecht, Reidel. 1986. pp. 427-469.
  44. Dalla Chiara Toraldo di Francia 1973 Dalla Chiara M. L” Torahlo di Francia G. A logical analysis of physical theories // Nuovo Cimento, v.3, No 1, 1973.
  45. Dalla Chiara Toraldo di Francia 1976 Dalla Chiara M. L., ToraldodiFrancia G. The logical dividing line between deterministic and indeterministic physics // Studia Logica, v 36, No 1, 1976. pp.1-5.
  46. Dalla Chiara Toraldo di Francia 1993 Dalla Chiara M. L. Toraldodi Francia G. Individuals, Kinds and Names in Physics// Bridging the Gap: Philosophy, Mathematics and Physics / G.Corsi etal. Eds. KJuwer, Dordrecht, 1993. pp. 261-283.
  47. Destouchcs-Fevrier 1951 Destouches-Février P. La structure des theories phisi- ques. Prcf. the Broglie L. dc. Pans: Presses Univ. de France, 1951.
  48. Dishkant 1978 Dishkant FS. An Extension of the Lukasiewicz’s logic to the modal logic of quantum mechanics // Studia Logica. 37. No 2. 1976, pp.149-155.
  49. Durr 1935 Durr K. Die Bedeutung der Negation. Grundzuge of empirical Logik// Erkenntnis. 5. 1951.
  50. Knill and R. Laflamme, Concatenated quantum codes, Techn. Report LAOR-96-2808. online preprint ph/9608012, 1996.
  51. Knill, R. Laflamme, and W. Zurek, Accuracy threshold for quantum computation, online preprint, 1996.
  52. Knill, R. Laflamme, and W. Zurek, Resilient quantum computation: error models and thresholds, Proc. Roy. Soc. bond. A 454, 365-384 1998 online preprint,1997.
  53. A. Bais, Flux metamorphosis, Nucl. Phys., В 170, 32-43 1980.
  54. J.MacWilliams, and N.J.A. Sloane, The Theory of Error-Correcting Codes, New York, North-Holland Publishing Company, 1977; перевод: Ф.Дж. Мак-Вильямс, H. Дд. Слоэн, Теория кодов, исправляющих ошибки, Связь, М., 1979.
  55. Fay Toros 1978 Fay G., Toros R Kvanlum logika. Budapest, Budapest. Gondolât, 1978.
  56. Font etal 1984 Font J.M., Rodriguez A.J. and Torrens A. Wajsberg algebras // Stochastica. 8 1984. pp.5-31.
  57. Fraassen 1981 Fraassen B. C.van. A modal interpretation of quantum mechanics//Current Issues in quantum logic / Eds. Beltrametti S., Fraassen B. Van. New York, London: Plenum, 1981, pp.229-258.
  58. Freundlich 1977 Freundlicht V. Two views of an objective quantum theory // Found. Phys. 7, No 3-4.1977. pp.279-300.
  59. Friedman Glymour 1972 Friedman M , Glymour C. If quanta had logic // J Phil Log. 1, No 1. 1972. pp.16-28.
  60. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys., В 360, 362-396-1991.
  61. t’Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys., В 138, 1-25 1978.
  62. Giuntini 1996 Giuntmi R. Quantum MV Algebras// Studia Logica, 56, 393- 417, 1996.
  63. Giuntini Greuling 1989 Giuntmi R., Greuling H. Toward a formal language for unsharp properties// Found.Phys. 20. 1989. pp.931-935.
  64. Goldblatt 1974 Goldblatt R. I. Semantic analysis of orthologic // J. Phil. Log. 3, No 1-2. 1974. pp. 19-35.
  65. Greechie 1974 Greechie R. J. Some results from the combinatorial approach to quantum logic // Synthesis, 29, No ‘A, 1974. pp.И3-130.
  66. Greechie Gudder 1971 Greechie R. J., GudderS. P. Is quantum logic a logic? Helv Phys.Acta, v.44, No 2, 1971. pp.236-240.
  67. Hadjisawas et al. 1980 Hadjisawas N., Thieffine F., Mugur-Schachter M Study of the Piron’s system of questions and propositions//Found Phys.,10. No 9-10. 1980. pp.751-756.
  68. Hardegree 1974 Hardegree G. M. The conditional in quantum logic // Syntheses, 29, No V*. 1974. pp.63-80.
  69. Hardegree 1975 Hardegree G. M. Quasi-impHcative lattice and the logic of quantum mechanics//Zeitschr.Naturforschuna, Tubingen, v 30A, No 11, 1975. pp.1347-1360.
  70. Hardegree 1981 Hardegree G. M. An axiom system for orthomodular quantum logic // Studia Logica 40, No 1 1981, pp. 1-12.
  71. Hooker 1974 Contemporary research m Foundations’ and philosophy of quantum theory / Ed. by Hooker C.A Dordrecht etc.: Reidel, 1973.
  72. Hooker 1975 The logico-algebraic approach in quantum mechanics vol 1. Historical evaluation / Ed. by Hooker C.A., Dordrecht etc.: Reidel, 1975.
  73. Hooker 1979 The logico-algebraic approach in quantum mechanics full 1, Contemporary consolidation / Ed. by Hooker C.A., Dordrecht etc.: Reidel, 1979.
  74. Hooker 1979a Physical theory as logico-algebraic structure / Ed. by Hooker C.A., Dordrecht etc.: Reidel, 1979.
  75. Hughes 1981 Highes R. /. G. Realism and quantum logic // Cuirent Issues m quantum Idgic/ Eds. Beltrametti S., Fraassen В Van. New York, London: Plenum, 1981, pp.77-87.
  76. I Kron et a! 1981 Kron A., Marie Z., Vujosevic S. Entailment and quantum logic // Current Issues in quantum logic / Eds. Beltrametti S., Fraassen B. Van. New York, London: Plenum, 1981, pp. 193-207.
  77. ISvozil 1998J Svozil К. Quantum Logic. Singapore Springer, 1998
  78. Evslin, S. Kakade, and J. Preskill, unpublished 1996.
  79. Preskill and L.M. Krauss, Local discrete symmetry and quantum mechanical hair, Nucl. Phys., В 341, 50-100 1990.
  80. Preskill, Quantum computing: pro and con Proc. Roy. Soc. Lond. A 454, 469-486 1998 online preprint, 1997; перевод в Квантовые вычисления: за и против. — РХД, Ижевск 1999.
  81. Preskill, Reliable quantum computers, Proc. Roy. Soc. London A, 454, pp. 385-410 1998 online preprint ph/9705031, 1997; перевод: Дж. Прескилл, Надежные квантовые компьютеры в этом издании.
  82. von Neumann, Probabilistic logics and synthesis of reliable organisms from unreliable components, in Automata Studies, ed. С. E. Shannon and J. McCarthy Princeton, Princeton University Press, 1956.
  83. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett, 74, 4091-4094 1995.
  84. Jauch Piron 1970 Jauch J. M., Piron C. What is «Quantum logic»? Quanta / Eds. Freund P.G.C., Goebel G.I. and Nambu J — Chicago, London: The University of Chicago Press, 1970. pp. 166-181.
  85. Obenland and A.M. Despain, Simulation of factoring on a quantum computer architecture, in Proceedings of the 4th Workshop on Physics and Computation, Boston, November 22-24,1996, Boston, New England Complex Systems Institute, 1996.
  86. Obenland, and A.M. Despain, Impact of errors on a quantum computer architecture, Technical Report, Information Science Institute, University of Southhem California, Oct 1, 1996; online preprint http://www., 1996.
  87. Kalmbach 1974 Kalmbach G. Orthomodular Logic // Zeitschr. Math.Log. und Grundl.Math., Bd.20, H.5, 1974. 395-406.
  88. Kochen Specker 1967 Kochen C., Specker E. P. The problem of hidden variables in quantum mechanics // J.Math.Mech., v.17, No 1,1967, pp.59-88.
  89. Kustner 1984 Kustner H. How to formalize natural language negation — a proposition and some consequences // Prague Bull.Math.Linguist.., No 2, 1984. pp. 15-25.
  90. Latser 1974 LatserR. Errors in the no hidden variables proof of Kochen and Specker//Synthesis. 29. No 1-4. 1974. pp.331-372.
  91. Alford, S. Coleman, and J. March-Russell, Disentangling nonabelian discrete quantum hair, Nucl. Phys., В 351, 735-748 1991.
  92. Grassl, Th. Beth, and T. Pellizzari, Codes for the quantum erasure channel, Phys. Rev., A 56, 33-38 1997.
  93. B. Plenio and P.L. Knight, Decoherence limits to quantum computation using trapped ions, Proc. Roy. Soc. Lond., A 453, 2017-2041 1997.
  94. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F. Wilczek, Interactions and excitations of nonabelian vortices, Phys. Rev. Lett., 64, 1632-1635-1990.
  95. Malhas 1994 Malhas O Q Abacus Logic the lattice of quantum propositions as the poset of a theoiy // J Symb Log 59 No2 1994 pp 501-515 Malinowski 1990 Malinowski J The deduction theorem for quantum logic — some negative results//J Symb Logic vol 55 No 2 1990 pp 615-6 25 Mangam 1973 Mangam P Su certe algebra connessc con logiche a pm valore // Bollettino deH’Umone Matemaiica Itahana 8, 1973 pp 6 8-78 Meyer 1999 MeyerD A Finite Precision Measurement Nullifies the Kochen- Spekker Theorem // Los-Alamos E-print Archive quant-ph/9905080, 1999
  96. Mittelstaedt 1978} Mittehtaedt P Quantum Logic Dordrecht etc Reidel, 1978
  97. Mittelstaedt 1981 Mittelstaedt P The modal logic of quantum logic // Current Issues in quantum logic / Eds Beltrametti S , Fraassen В Van New York, London Plenum, 1981, pp 479-504
  98. Mittelstaedt 1983 Mittelstaedt P Relativistic quantum logic // Int J Theor Phys 22 No 4 1983 pp 293-352
  99. Mundici 1986 Mundici D Interpretation of AF C*-Algebras in Lukasiewicz Sentential Calculus// Journal of Functional Analysis 65, 15-63 1986 Nishimura 1980 Nishimura H Sequential method in quantum logic //J Symb Log ,45, No 2, 1980 pp 335-352
  100. Gershenfeld and I. Chuang, Bulk spin resonance quantum computation. Science, 275, 350-356-1997.
  101. Read and Е. Rezayi, Quasiholes and fermionic zero modes of paired fraction quantum Hall states: the mechanism for nonabelian statistics, Phys. Rev. B, 54, 16864-16887 1996; online preprint,1996.
  102. Nishimura 1994 J Nishimura H Proof theory for minimal quantum logic I and II //Intern J Theoret Phys 33,1994 pp 103-113 and 1427-1443 Pavicic 1992 PaViéic M Bibliography on quantum logics and related structures // Int J of Theoretical Physics Vol 31 No3 1992 pp 373-460 Putnam 1974 Putnam H How to think quantum-logically9 // Synthesis, 29, No Vi, 1974 pp 55-61
  103. Gâcs, Reliable computation with cellular automata, J. Comp. Sys. Sei, 32, 15-78 1986.
  104. Shor, Fault-tolerant quantum computation, in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, CA, IEEE Computer Society Press, 1996, pp. 56-65 online preprint,1996.
  105. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev., A 52, R2493-R2496 1995.
  106. Lett., A 92, 271-272 1982.
  107. 1-20.
  108. A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, and H.J. Kimble, Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett., 75, 4710-4713-1995.
  109. Quantum Logic from Quantum Computation //Alternative Logics. Do Sciences Need Them? / Paul Weingartner Ed.. Springer. Berlin, Heidelberg, 2004, pp. 323-338
  110. Laflamme, C. Miquel, J.R Paz, and W. Zurek, Perfect quantum error correction code, Phys. Rev. Lett., 77, 198-201-1996.
  111. Landauer, Is quantum mechanically coherent computation useful? In Proc. Drexel-4 Symposium on Quantum Nonintegrability-Quantum Classical Correspondence, Philadelphia, PA, 8 September 1994, ed. D. H. Feng and B.-L. Hu Boston, International Press, 1997.
  112. Landauer, Is quantum mechanics useful? Phil, Tran. R. Soc. bond., 353, 367-376-1995.
  113. Landauer, The physical nature of information, Phys. Lett., A 217, 188- 193-1996.
  114. Prange and S. Girvin eds., The Quantum Hall Effect, New York, Springer-Verlag, 1987; перевод Квантовый эффект Холла, под ред. Р. Пренджа и С. Гирвина. — М.: Мир 1989.
  115. Р. Feynman, Simulating physics with computers, Int. J. Theor. Phys., 21, 467-482-1982; перевод: Р. Фейнман, Моделирование физики на компьютерах. Квантовый компьютер и квантовые вычисления. — Ижевск, РХД 1999.
  116. W. Ogbum and H. Preskill, Topological quantum computation, in Lect. Notes in Comp. Sei. C.P. Williams ed. 1509, 341-356, Springer-Verlag 1999.
  117. Redei 2001 Redet M Facets of Quantum Logic // Stud Hist Mod Phys Vol 32 Noi 2001 pp 101-111
  118. Reichenbach 1944 Reichenbach H Philosophic foundations of quantum mechanics Berkeley, Los Angeles Umv of California Press, 1944 Riscos Laita 1987 RiscosA , Laita L M N-categories in logic // Zeitschr Math Log Grundl Math , Bd 33 1987, s 507-516 Suppes 1976 Logics and Probability in Quantum Mechanics / Ed by Suppes P , Dordrecht etc Reidel 1976
  119. Haroch and J.-M. Raimond, Quantum computing: dream or nightmare? Phys. Today, 49 8, 51-52 1996.
  120. Lloyd, Universal quantum simulators, Science, ПП, 1073-1078 1996; correction in Science 279,1113-1117 1998.
  121. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev., D 14, 2460-2473-1976.
  122. Stachel 1974 Stachel J Comments on “The formal representation of physical quantities” // Logical and epistemological studies in contemporary physics/Ed by Cohen R S , Wartofsky M W Dordrecht etc Reidel 1974 pp 214-223
  123. Stachel 1976 Stachel J The “logic” of “quantum logic” // PSA 1974 Proc 1974 Biennial Meet Phil Sei Assoc , Dordrecht etc Reidel, 1976, pp 515-526 Stachow 1981 Stachow E -W Sequential quantum logic // Current Issues in quantum logic / Eds Beltrametti S , Fraassen В New York, London Plenum, 1981,pp 173-191
  124. Stairs 1983 Stairs A On the logic of pairs of quantum systems // Synthesis 56, No 1 1983 pp 47-60
  125. Stout 1979 Stout L N Laminations, or How to Build a Quantum-Logic-Valued Model of Set Theory///Manuscripta Mathematica Vol 28 1979 pp 379- 403
  126. Strauss 1936 Strauss M Zur Begründung der statistical transformatuins théorie der quantenphvsik//Berliner Berichte 1936 S 38-398
  127. Banks, L. Susskind, and M.E. Peskin, Difficulties for the evolution of pure states into mixed states, Nucl. Phys., В 244, 125-134-1984.
  128. Takeuti 198 L Takeuti G. Quantum Set Theory // Current Issues in quantum logic / Eds. Beltrametti S., Fraassen B. Van New York, London. Plenum, 1981. pp 302-322.
  129. Tamura 1988 Tamura S. AGentzen formulation without the cut rule for ortholattices // Kobe Journal ofMathematics 5 1988, pp. 133-150.
  130. Thieffine 1983 Thieffme F. Compatible complement and Piron’s system and ordinary modal logic//Lett.Nuovo Cim 36 No 112. 1983 pp 377-381
  131. Thieffme eta, 1981 Thieffine F, Hadjisavvas N, Mugur- Schächter M. Supplement to a critique of Piron’s system of questions and propositions // Found Phys. 11. No 7-8. 1981. pp.645-649.
  132. Urquhart 1973 UrquhartA. An Interpretation of many-valued logic // Zeitschr. Math.Log. und Grundl.Math., 19 1973, pp. 111- 114.
  133. Vasyukov 1993 Vasyukov V. L. The Completeness of the Factor Semantics for Lukasiewicz’s Infinite-valued Logics // Studia Logica 52, 1 1993, pp 143-167.
  134. Vasyukov 2000 Vasyukov V. L. Many-valued Logic of Directed Time // Multple-Valued Logic, vol.5, 2000, pp. 163-173.
  135. Vasyukov 2003 Vasyukov V. L. Effects in Quantum Logic of Observables // Логические исследования, вып. 10, M.: Наука, 2003. С.241-256.
  136. Vasyukov 2003 Vasyukov V. L. From Semantics to Syntax: Quantum Logic of Observables // Alternative Logics. Do Sciences Need Them? / Paul Weingartner Ed.. Springer, Berlin, Heidelberg, 2004, pp.299-322.
  137. Vikipedija
  138. G. Unruh, Maintaining coherence in quantum computers, Phys. Rev., A 51, 992-997-1995.
  139. H. Zurek, Decoherence and the transition from quantum to classical, Phys. Today, 44, 36-44 1991.
  140. K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299, 802-803 1982; Nature 304, 188-189-1983.
  141. Wang 1961 Wang H. The calculus of partial predicates and its extension to set theory 1 //Zeitschr. Log und Grundl.Math., Bd.7,1961.
  142. Weizsäcker 1956 Weizsäcker C. F. von. Komphmentaritat und Logik //Naturwissenschaften. Bd.42, H.19, 1956, S.521-529.
  143. Zeman 1979 Zeman J. J. Quantum logic with implication // Notre Dame J.Form.Log. 20, No 4. pp 723-728.
  144. А.Ю. Китаев, Квантовые вычисления: алгоритмы и исправления ошибок, Успехи мат. наук, 52, стр. 53-112 1997.
  145. Алексеев и др. 1984 Алексеев И. С., Овчинников Н. Ф., Печенкин А.А. Методология обоснования квантовой теории История и современность М.: Наука 1984.
  146. Белнап Стил 19811 Беанап И, Стил Т. Логика вопросов и ответов М.: Прогресс. 1981.
  147. Биркгоф 1964} Биргкоф Г. Теория решеток. М.: Наука. 1964.
  148. Брателли Робинсон 1982 Брателли У., Робинсон Д. Операторные алгебры и квантовая статистика М.. Мир. 1982.
  149. Бунге 1975 Бунге М. Философия физики. Прогресс, М.. 1975.
  150. Васюков 1983 Васюков В.Л. Квантовая логика времени // Логические исследования Труды научн.-иссл. семинара по логике ИФАН СССР, М., 1983. С.93-102
  151. Васюков 1987 Васюков В.Л. Комплекснозначные логики или как учитывать контекст в логических системах // Нестандартные семантики для неклассических логик. / Труды научно-исследовательского семинара по логике ИФАН СССР, М., 1987. C.15-3S.
  152. Васюков 1989 Васюков В.Л. Квантовая логика втопосах// Исследования по неклассическим логикам, Наука, М., 1989. С. 338-348
  153. Васюков 1989а Васюков В.Л. Квантовая логика наблюдаемых: реконструкция и семантический анализ // Синтаксические и семантические исследования неэкстенсиональных логик, Наука, М., 1989. С. 120-169.
  154. Васюков 1989в Васюков В.Л. Квантовая логика и расширения логических систем // Современные исследования по квантовой логике, изд-во МГУ, М., 1989. С.76-89.
  155. Васюков 1998 Васюков В.Л. Формальная феноменология, Наука, М., 1998.
  156. Васюков 1999 Васюков В Л Направление времени в семантике многозначных возможных миров //Труды научн.-исслед. семинара логического центра Института философии РАН, М., 1999. С.143-155.
  157. Гольдблатт 1983 Гольдблатт Р. Топосы: Категорный анализ логии. Мир, М” 1983
  158. Е. Knill and R. Laflamme, A theory of quantum error-correcting codes, Phys. Rev. A 55, 900-911 1997.
  159. Ермолаева Мучник 1974 Ермолаева H. М., Мучник А. А. Модальные расчирения логическич исчислений типа Зао Вана // Исследования по зормализованным языкам и неклассическим логикам. М.: Наука. 1974. С.172-193.
  160. Карнап 1971 Карнап Р. Философские основания физики. Прогресс, М., 1971.
  161. Карпенко 1985 Карпенко А. С. Фактор-семантика для бесконечнозначной логики Лукасевича // Неклассические логики Труды научно-исследовательского семинара по логике Института философии АН СССР, М., 1985. С.20-26.
  162. Кейслер Чэн 1971 Кейслер Г.Дж., Чэн чен-чунь. Теория непрерывных моделей. М.: Мир, 1971.
  163. Кон 1968 Кон П. Универсальная алгебра. М.: Мир, 1968.
  164. Лукасевич 1959 Лукасевич Я. Аристотелевская силлогистика с точки зрения формальной логики. М.: Изд-во иностр.лит-ры, 1959.
  165. Макки 1965 Макки Дж. Лекции по математическим основам квантовой механики. М.: Мир, 1965.
  166. Меськов 1986 Меськов В. С. Очерки по логике квантовой механики. М.: изд-во МГУ, 1986.
  167. Н.-К. Lo and J. Preskill, Nonabelian vortices and nonabelian statistics, Phys. Rev., D 48, 4821^834 1993
  168. Нейман 1964 Нейман И. фон. Математические основы квантовой механики. М.: 1964.
  169. Панченко 1981 Панченко А. И. Логико-гносеологические проблемы квантовой физики. Наука, М., 1981.
  170. Панченко Роченко 1983 Панченко А. И., Роченко H. М. Развитие квантовой логики в зарубеной литературе. Период медду IV Бучарест, 1971 и VII Залььбург, 1983 меддународными конгресами по логике, методологии и и яилосочии науки: Обзор // Материалы к VII Меддународному конгрессу по логике, методологии и чилосочии науки: современные зарубеыные исследования. М., 1983. С.136-167.
  171. Пятницын 1965 Пятницын Б. Н. О логике физики микромира //Логическая структура научного знания. М.: Наука, 1965. С.336-348.
  172. Р. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35thAnnual Symposium on Fundamentals of Computer Science Los Alamitos, CA, IEEE Press, 1994, pp. 124- 134; Расчиренная версия: SIAM J. Comp. 26, 1484-1509 1997, online preprint quant-ph/9508027; перевод: П. Шор, Полиномиальные по времени алгоритмы разложения числа на простые множители и нахождения дискретного логарифма для квантовых компьютеров. Квантовый компьютер и квантовые вычисления. — Ижевск, РХД 1999.
  173. Рейхенбах 1962 Рейхенбах Г. Направление времени. Изд-во иностр. лит., М” 1962.
  174. Роженко 1964 Роженко П. М. Дополнительность и квантовая логика // Философские вопросы современной физики, Киев: Наукова думка, 1964. С.265-270.
  175. Роутлей Мейер 1981 Роутлей Р., Мейер Р. Семантика следования // Семантика модальных и интенсиональных логик. Прогресс, М., 1981. С.363-423.
  176. С. Zalka, Threshold estimate for fault tolerant quantum computing online preprint,1996.
  177. Сегербсрг 1979 Сегерберг К. Временная логика фон Вригта//Логический вывод. М.: Наука, 1979. С.173-205.
  178. Токио 2003 Токио К. Extended Quantum Logic // Journal of Philosophical Logic Vol. 32. pp. 549-563.
  179. Фейс 1974 ФейсР. Модальная логика. М.: Наука. 1974.
  180. Эмх 1976 ЭмхЖ. Алгебраические методы в статистической механике и квантовой теории поля. М.: Мир, 1976.